Not logged in - Login
< back

Winter Ozone AQ Modeling Results


The WAQS modeling team conducted a series of CAMx sensitivity simulations off of 3SAQS Base 2011 version A (CAMx_3SAQS04_B11a) with the objectives of understanding the deficiencies and improving the ability of the model in reproducing high wintertime ozone concentrations related to localized meteorological conditions and oil and gas emissions sources. The WRF Winter Modeling Workplan and WRF Winter Modeling Evaluation Report describe our efforts to improve the simulation of the meteorology associated with high wintertime ozone. The WRF modeling conducted by the WAQS team resulted in a wintertime WRF configuration that results in a better model of the inversion events that accompany high ozone concentrations.

The WAQS modelers conducted a CAMx simulation with the new winter meteorology (and additional improvements to the way CAMx simulates snow albedo and chemistry). The changes to the meteorology did little to improve the CAMx under predictions of high wintertime ozone. Using insights from top down modeling and observational campaigns in Intermountain West oil and gas basins, the WAQS team developed a brute force oil and gas emissions sensitivity to test the hypothesis that our simulations underpredict VOC emissions and overpredict NOx emissions from oil and gas sources. The second winter O3 sensitivity used the same meteorology inputs as the winter meteorology simulation and included the following adjustments to the emissions from oil and gas sources (both area and point): 2x VOCs, 10x formaldehyde, and 0.5x NOx. While the emissions perturbation produced improvements at some monitoring locations at some times, there were still high ozone events that were badly underpredicted by the model.

The final CAMx sensitivity simulation conducted by the WAQS modelers was designed to test the hypothesis that there was still to much dilution in the surface layer of the model. The winter ozone layer sensitivity used the adjusted oil and gas emissions and the WRF winter meteorology. The WAQS modelers adjusted the WRFCAMx processor to use the same vertical layer structure as WRF within the first 6 model layers. In all of the previous simulations (base, winter met, oil and gas emissions) the first 6 WRF layers were collapsed into the 3 CAMx layers such that WRF layers 1+2 = CAMx layer 1, WRF layers 3+4 = CAMx layer 2, and WRF layers 5+6 = CAMx layer 3. This collapsing roughly amounted to 12 m deep WRF layers being collapsed to 24 m deep CAMx layers. In the vertical mixing sensitivity the WRF vertical layer structure was preserved for the first 6 layers resulting in 28 layer CAMx meteorology (compared to 25 layer meteorology in the previous runs). Note that there was still layer collapsing applied above the first 6 WRF layers.

Simulation Summary:

Base Simulation
Simulation ID: CAMx_3SAQS04_B11a
Modeling Period: February 1-March 31, 2011
Analysis Domain: 4-km

Meteorology Sensitivity
Simulation ID: CAMx_3SAQS04_B11a_WinterO3
Met: WRF Winter + WRFCAMx Snow 25 layers
Emissions: Same as CAMx_3SAQS04_B11a

Oil and Gas Emissions Sensitivity
Simulation ID: CAMx_3SAQS04_B11a_WinterO3_OG_Emis
Met: Same as CAMx_3SAQS04_B11a_WinterO3
Emissions: 2x O&G VOC, 10x O&G HCHO, 0.5x O&G NOx adjustments to CAMx_3SAQS04_B11a

Vertical Transport Sensitivity
Simulation ID: CAMx_3SAQS04_B11a_WinterO3_OG_Emis_Layers
Met: WRF Winter + WRFCAMx Snow 28 layers (no collapsing in layers 1-6)
Emissions: Same as CAMx_3SAQS04_B11a_WinterO3_OG_Emis


The results of the winter O3 modeling simulations are shown first as high level summaries of the domain wide performance and then as site-level performance plots.

4-kmPerformance Domain-Wide PerformanceSummaries

SimID Correlation        FB        FE        Max_mod        Max_obs        MB        ME        Mean_mod        Mean_obs        Min_mod        Min_obs        NMB        NME        R_Sq        RMSE Base11a       0.59       3.16       29.9       72       149       0.79       9.07       39       38.2       0       0       2.07       23.7       0.348       13.2 WinterO3       0.61       -10.7       32.3       70.2       149       -4.19       9.37       34       38.2       0       0       -11       24.5       0.372       13.1 OG_Emis       0.63       -4.71       30.1       114       149       -2.54       8.95       35.6       38.2       0       0       -6.66       23.4       0.397       12.3 Layers       0.64       -3.23       29.5       99.2       149       -1.74       8.64       36.4       38.2       0       0       -4.55       22.6       0.41       12.2

AQS Hourly O3 sites in the 4-km Domain

AQS Hourly NO2 sites in the 4-km Domain

Upper Green River Basin, WY Hourly O3 sites

Image title

Upper Green River Basin, WY Hourly NO2 sites

Image title

AQS Hourly O3 sites in the 4-km Domain

Soccer Plots by Site

Timeseries Analysis



Uintah Basin Winter Ozone Study
These sites only measured ozone and meteorology parameters

SiteLat, Long, Elev2011 Episode Dates1-hr O3 ConcentrationsTime-Height
Altamount40.3603, -110.2858, 1949.8056Feb 14>85 ppbWRF-Winter
  Mar 2-3>85 ppbWRF-Winter
Cedarview40.383524, -110.072563, 1692.2496Jan 7-8>80 ppb 
  Jan 25-31>90 ppb
  Feb 12-16>135 ppbWRF-Winter
  Feb 23-24>100 ppb
  Mar 1-3>90 ppbWRF-Winter
Dinosaur40.4371, -109.3047, 1462.7352Jan 6-9>80 ppb 
  Feb 12-16>110 ppbWRF-Winter
Duchesne40.1615, -110.4011, 1682.496Jan 29-30>90 ppb 
  Feb 12-16>120 ppbWRF-Winter
Horse Pool40.1437, -109.4672, 1569.4152Jan 6-8>100 ppb 
  Jan 24-31>95 ppb
  Feb 12-16>130 ppbWRF-Winter
  Feb 23-25>120 ppb
  Mar 1-4>115 ppbWRF-Winter
Jensen40.3671, -109.3522, 1450.848Feb 12-16>100 ppbWRF-Winter
  Feb 23-24>80 ppb
  Mar 1-2>80 ppbWRF-Winter
Lapoint40.404, -109.8157, 1673.9616Jan 6-8>90 ppb 
  Jan 27-31>80 ppb
  Feb 12-16>120 ppb
  Feb 22-24>100 ppb
  Mar 1-3>85 ppb
Ouray40.054768, -109.688001, 1463.9544Jan 6-9>100 ppb 
  Jan 16-17>95 ppb
  Jan 26-31>105 ppb
  Feb 11-16>140 ppb
  Feb 24-25>120 ppb
  Mar 1-3>100 ppb
Pariette Draw40.03460278, -109.8300556, 1466.6976Feb 11-16>140 ppb 
  Feb 22-25>120 ppb
  Mar 1-3>110 ppb
Rabbit Mountain39.8687, -109.0973, 1878.7872Jan 16>85 ppb 
  Feb 14-16>100 ppb
Red Wash40.1972, -109.3525, 1688.8968Jan 6-9>95 ppb 
  Jan 26-31>95 ppb
  Feb 12-15>135 ppb
  Feb 23-24>105 ppb
  Mar 1-3>100 ppb
Roosevelt40.30073056, -109.9784172, 1544.7264Jan 6-9>80 ppb 
  Jan 27-31>100 ppb
  Feb 12-16>120 ppbWRF-Winter
  Feb 3-4>100 ppb
  Mar 1-3>80 ppb
Vernal40.443273, -109.560983, 1662.684Jan 8-9>85 ppb 
  Feb 12-16>100 ppbWRF-Winter
  Feb 24>85 ppb 
  Mar 2>80 ppb

SiteLat, Long, Elev2011 Episode Dates8-hr O3 ConcentrationsObs Y/N
Wyoming Range42.98, -110.35, 2475Feb 15>80 ppbY
  Mar 10>80 ppb
Pinedale42.92, -109.79, 2388Mar 1-2>85 ppbY
  Mar 5>80 ppb 
Juel Springs42.37, -109.56, 2144Mar 2>90 ppbY
  Mar 12>85 ppb
  Mar 15>85 ppb
Daniel42.79, -110.05, 2173Mar 10>80 ppbY
Boulder42.71, -109.75, 2160Feb 14>85 ppbY
  Mar 1-5>120 ppb
  Mar 12>120 ppb
Mobile Trailer42.68, -109.8, 2143Feb 14>80 ppbY
  Mar 3>80 ppb

Emissions Adjustments

O&G Basin Emission Adjustment Factors

Denver-Julesberg >2.0  Petron et al., 2012
North San Juan     
South San Juan     
Uintah0.251.64.4Uintah and Duchesne CountiesKarion et al., 2013; Ahmadov et al., 2015
Southwest Wyoming     
Big Horn     
Wind River     
Powder River     
Great Plains     
3SAQS Sensitivity will use 2.0x VOC and 0.5x NOx across the board for area and point O&G sectors.

Upper Green River Basin CAMx Analysis

WYDEQ Hourly VOC Sites

Monthly Average Concentrations

Big PineyVOCCH4
BoulderVOCCH4Winter VOCWinter CH4Winter NO2Hourly CH4Hourly NO2
PavilionVOCCH4Winter VOCWinter CH4Winter NO2

Monitoring Maps

Zoom of 3-State O&G Basins

Uintah and Piceance Basins

Southwest Wyoming Basin